a2 United States Patent

US009465725B2

10) Patent No.: US 9,465,725 B2

Maczuba 45) Date of Patent: *QOct. 11, 2016
(54) SOFTWARE DEFECT REPORTING (56) References Cited
(71) Applicant: International Business Machines U.S. PATENT DOCUMENTS
Corporation, Armonk, NY (US) 5301118 A 4/1994 Heck et al.
5,361,352 A 11/1994 TIwasawa et al.
(72) Inventor: Jed Maczuba, Windham, NH (US) 6,336,217 Bl 1/2002 D’ Anjou et al.
6,477,471 Bl 11/2002 Hedstrom et al.
(73) Assignee: International Business Machines 6,513,154 Bl 1/2003 Porterfield
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Nathaniel Ayewah et al. “Evaluating Static Analysis Defect Warn-
. ings on Production Software”, [Online], 2007, pp. 1-7, [Retrieved
zlgli;lgitent is subject to a terminal dis- from internet on Jun. 18, 2016], <http://delivery.acm.org/10.1145/
: 1260000/1251536/pl-ayewah.pdf>.*
(21) Appl. No.: 14/330,187 (Continued)
(22) Filed: Jul. 14, 2014 Primary Examiner — Thuy Dao
Assistant Examiner — Ziaul A Chowdhury
(65) Prior Publication Data (74) Attorney, Agent, or Firm — John R. Pivnichny;
US 2014/0325487 Al Oct. 30, 2014 Hunter E. Webb; Keohane & D’Alessandro PLLC
57 ABSTRACT
o Provided are approaches for software defect reporting. Spe-
Related U.S. Application Data cifically, one approach provides identifying a software
(63) Continuation of application No. 12/759,829, filed on defect; generating a software defect report, wherein the
Apr. 14, 2010, now Pat. No. 8,813,039. software defect report is generated in real-time as the
software defect is identified during testing of the test case,
(51) Int. CL wherein the software defect report is submitted by a testing
GO6F 9/44 (2006.01) entity to a software developer responsible for creating a
GOGF 11/36 (2006.01) software product having the software defect, and wherein
GO6F 11/07 (2006.01) the defect report contains information to identify the loca-
(52) US. CL tion of the software defe.ct. in .the application code of the
CPC ... GOGF 11/3688 (2013.01); GO6F 110706 Software product; determining if the software defect report
(2013.01); GOGF 11/0778 (2013.01); GOGF %nformat%on is complete; and if the so.ftware defect report
113692 (2013.01) ;nformat;on is not cpmple;te, the updating the dpfect report
. . . information, determining if the software defect is reproduc-
(58) Field of Classification Search

CPC ... GO6F 11/3692; GOGF 11/0742; GOG6F
11/3688; GO6F 11/0706; GOGF 11/0778
See application file for complete search history.

ible, and recreating the software defect in the case that the
software defect is reproducible.

12 Claims, 8 Drawing Sheets

300
Test Lead Valid Yes
302 defect?
318
No
Log defect || Update
Tester Execute
Xecu Pass test report in test case
304 test case case 312 i
1o 312/ IRepository 320
310 314
T Yes | prepare T |
efect [—
report 313
Software Release
Developer i
‘; 06p 308 Fix
306 defect Je—
322

US 9,465,725 B2

Page 2
(56) References Cited 2008/0172655 Al* 7/2008 Daviaccceeeenn. GOG6F 8/77
717/130
U.S. PATENT DOCUMENTS 2008/0178155 Al 7/2008 Gogh et al.
2008/0229159 Al 9/2008 Viljoen
6,530,076 Bl 3/2003 Ryan et al. 2009/0070639 Al 3/2009 Langford et al.
6,593,940 Bl 7/2003 Petersen et al. 2009/0132861 Al* 5/2009 Costacccoevnene. GOGF 11/0748
7,194,664 Bl 3/2007 Fung et al. 714/45
7,293,201 B2 11/2007 Ansari 2009/0138766 Al* 52009 Rui ...coovvvrrernenns GO6F 11/0778
7,406,685 B2 7/2008 Flechart et al. . 714/57
7,475,286 B2 1/2009 Altaf et al. 2010/0083043 Al* 4/2010 Niiokacco.... GO6F 11/0706
7,487,406 B2 2/2009 Kobrosly et al.] 714/23
7,503,037 B2 3/2009 Banerjee et al. 2010/0198799 Al 8/2010 Krishnan et al.
7,519,604 B2 4/2009 Gomes et al. 2011/0145628 Al1* 6/2011 Wilson GO6F 11/3692
7,603,660 B2 10/2009 Davia et al.) 714/4.2
7,607,046 Bl 10/2009 Bruckhaus 2011/0252405 A1* 10/2011 Meirman et al. 717/125
7,617,423 B2 11/2009 Patel et al. 2013/0024847 Al* 1/2013 Browne GOGF 11/3692
7,774,757 Bl 8/2010 Awasthi et al. 717/131
7,971,193 B2 6/2011 1. et al. 2014/0304686 Al* 10/2014 Hasegawa GO6F 11/3692
7,987,390 B2 7/2011 Chandrasekaran 717/125
8,074,119 Bl 12/2011 Rao et al.
8,151,248 B1* 4/2012 Butler et al. 717/124
8,276,126 B2 9/2012 Farnham et al.
8,429,454 B2 4/2013 Yuan et al. OTHER PUBLICATIONS
8,453,027 B2 5/2013 Bartz et al. Pieter Hooimeijer et al. “Modeling Bug Report Quality”, [Online],
2002/0073403 Al 6/2002 Fleehart et al. 2007 3443, [Retrieved f . 7 8. 2016
2002/0116153 Al* 8/2002 Wybouw-Cognard GOGF 11/3688 + Pp. 34-43, [Retrieved from internet on Jun. 18, 1
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.
702/186 2702&rep=repl&type=pdf>.*
2003/0018952 Al 1/2003 Roetzheim Tim Menzies et al. “Automated Severity Assessment of Software
2003/0159133 Al* 82003 Ferri ...cooovvnnnnn. GOG6F 11/3636 Defect Reports”, [Online], 2008, pp. 1-11, [Retrieved from internet
717/130 on Jun. 18, 2016], <http://menzies.us/pdf/08severis.pdf>.*
2004/0128653 Al 7/2004 Arcand Nicolas Bettenburg et al. “What Makes a Good Bug Report”,
%883;8}2%;% ﬁ} ® 2;5883 érend GOGF 11/0727 [Online], 2008, pp. 1-11, [Retrieved from internet on Jun. 18, 2016],
CACOM covvvvsssvseeee Tlans 14 <hitp/delivery.acm.org/10.1145/1460000/1453146/p308-bet-
. ; tenburg.pdf>.*
2005/0066234 Al* 3/2005 Darringer GOGF 11/3688
artinger 714/38.1 Pieter Hooimeijer et al., “Modeling Bug Report Quality”, ASE’07,
2005/0097516 Al 5/2005 Donnelly et al. Nov. 5-9, 2007, Atlanta, Georgia, Copyright 2007, pp. 34-43.
2005/0114842 Al 5/2005 Fleehart et al. Parastoo Mohagheghi et al., “An Empirical Study of Software
2006/0085132 Al* 4/2006 Sharma GOGF 11/3688 Reuse vs. Defect-Density and Stability”, Proceedings of the 26th
702/1 International Conference on Software Engineering (ICSE’04),
2006/0156077 Al 7/2006 Altaf et al. Copyright 2004 IEEE, 11 pages.
2006/0195731 AL* 82006 Patterson GO6F 11/0778 Tim Menzies et al., “Automated Severity Assessment of Software
006/0282410 AL 122006 Sen cf al 714/723 Defect Reports”, Copyright 2008 IEEE, pp. 346-355.
en et al. . .
2007/0089092 Al 3k 4/2007 Schmldt et al' 717/126 Zlaul A' ChOWd}Iury’ USPTO Omce ACtlon’ U'S' Appl' NO'
. 12/759,829, Mail Date Jan. 2, 2013, 26 pages.
2007/0089094 Al 4/2007 Levine et al. Ziaul A. Chowdh USPTO Final Office Acti US. Appl. N
2007/0168343 Al 7/2007 Best et al. tau A. LOOWAIULY, inal Oflice Action, U.S. Appl. No.
2007/0168757 Al 7/2007 Kobrosly et al. 12/759,829, Notification Date Jun. 27, 2013, 44 pages.
2008/0046786 Al* 2/2008 Patel et al. wveveevoi, 714/100 Ziaul A. Chowdhury, USPTO Notice of Allowance and Fee(s) Due,
2008/0065577 Al 3/2008 Chefalas et al. U.S. Appl. No. 12/759,829, Date Mailed Apr. 14, 2014, 19 pages.
2008/0126878 Al* 5/2008 Bestccocvvernens GOGF 11/3636

714/45

* cited by examiner

US 9,465,725 B2

Sheet 1 of 8

Oct. 11, 2016

U.S. Patent

1T
() ADIATA
811 INALSAS TVNAHALXA
AOVIOLS 7
— [ans
8ET 121depV N10MIIN (SYHOVAIALINI |
1 0/1
A
A
Y
901
— LINN
AYde
CEIPWED DNISSADOUd
0€T NV
01T AMOIWAIN
¥0T WALSAS YALNJINOD

A 4

0T1
AVT14SIa

I 2and1q

¢0c nun
$0Z 1Un Buissesold e1eq

US 9,465,725 B2

Sheet 2 of 8

Oct. 11, 2016

U.S. Patent

Buisseooud ereq Z1Z Jauud /

/ = jmﬂm\ v1¢ ebeiois _
_
|
N

97 Uo1d2UU0))
JI0MION

9()Z Uo1d2UU0))
JI0MION

00z 7 - amSig

US 9,465,725 B2

Sheet 3 of 8

Oct. 11, 2016

U.S. Patent

TTE
139)9p — .
o 80¢ Bawcomé
aseaY [PA3(
IIBAM)JOS
€Lt 310daa
139]9p
daedaag S
— a —
07¢ K10psoday 7T osed 0r¢ .
JISBI 189) ut 310dax 1591 sseq ASBI I8N F0<
epd || 193j9p S0 ANIIXY 19)89],
ON
SI¢
PARLIE]Y 5
Pea 189
¢ dangLy

00 7

US 9,465,725 B2

Sheet 4 of 8

Oct. 11, 2016

U.S. Patent

8TF 153304 OTF 110doy L
PIRA IRE] ET4 | ouF
JEUPI007 aepdn 19)S3 L,
SaX
8T PP
A..a_au_wg{ L T i w..w-..umm_m@ma
say 801 sang g \ / 4
[807 YAV IPIBAS 20am0g
ON
SaX
svanos —= 72
ocr [T) S~ ;PAA[OAUL
o zwwwc k1 wowa ™~ sona So1 " sutopshs
IseI[d
P xt1 BT PR ETET | azeuy ON PO
SIX
(413 .
&9391dwi0d 70b
oJur 13959 ndojoadqg
TP s ON (213 1F 20doa aaeAog
S0 JIqEIIEAY Zo1qronpoadaa 195Op 300
u—o.:wo.w wopq MINADY 199§0p X14
0Ty
3IPa
2)8NY SIX

ooy — "

$ dan31

US 9,465,725 B2

Sheet 5 of 8

Oct. 11, 2016

0¢S 110doa
Ehp) bl(|
epdn

$0S 199891,

- |
omww_om <1 oLs
1995901 X1
oN
—_— TIis
soamos e s —
o . oda — _

PP 1 soRpduwo) 80¢ 110day 305 705 asdopAdd
AUIULINA(PaENy OJuy 39919 »JRd 2953 X1 3180

1 iy o vl 1953 X1 Ao

U.S. Patent

0s S dang1q

US 9,465,725 B2

Sheet 6 of 8

Oct. 11, 2016

U.S. Patent

a

=

ynsoy

009 "~

019 uonwvy

809 103d3d13)uy a0jepPIIOSUO)) 0]

09 103dadadyuy Oy ey,

¥09 Ax0.ag uondy

709
Jaydedsiq
NAIIS

9 9ang1

US 9,465,725 B2

Sheet 7 of 8

Oct. 11, 2016

U.S. Patent

80

™~

(dr ddeal)
8077199

oo "~

(493

01L
(a1 doeay)
h{Vg BES)

0L 7 wdIsAS

01L
(a1 ddeay)
307199

FOL 1 wdysAs

A

T0L 10)dadadyuy ao0jeprosuo) 30

L 9an31

US 9,465,725 B2

Sheet 8 of 8

Oct. 11, 2016

U.S. Patent

o

I8 [90ue) 9T MO

PI8 ap0D drz 718 AEIS

018 S1D

808 199.38

908 1581

$08 1801

708 drgoag 19sn depdn

008 "~
Q 9an31

US 9,465,725 B2

1
SOFTWARE DEFECT REPORTING

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of, and claims the
benefit of, co-pending and co-owned U.S. patent application
Ser. No. 12/759,829, filed Apr. 14, 2010, the entire contents
of which are herein incorporated by reference.

FIELD OF THE INVENTION

Aspects of the present invention provides for a method
and a system for improving the defect reporting mechanism
in the software quality automated process using automated
log scanning

BACKGROUND OF THE INVENTION

A software bug, or defect, is the common term used to
describe an error, flaw, mistake, failure or fault in a computer
program or system that produces an incorrect or unexpected
result or causes it to behave in unintended ways. Most bugs
arise from mistakes and errors made by people in either a
program’s source code or its design. Others may be caused
by compilers producing incorrect code.

Bugs can have a wide variety of effects with varying
levels of inconvenience to the user of the program. Some
bugs have only a subtle effect on the program’s functionality
and may thus lie undetected for long time while more serious
bugs may cause the program to crash or freeze. Other bugs
may have more serious ramifications such as security bugs
that might for example enable a malicious user to By-pass
access controls in order to obtain unauthorized privileges.

The risk (likelihood of occurrence and impact) of soft-
ware bugs is immense. Virtually every business in the
United States and across the globe depends on software for
the development, production, distribution and support of
products and services. Entire industries alone have been
enabled by low-cost computational capabilities supplied by
computers and software.

According to market researcher DataMonitor, the size of
the worldwide software industry in 2008 was US$303.8
billion, an increase of 6.5% compared to 2007. Americas
account for 42.6% of the global software market’s value.
DataMonitor forecasts that in 2013, the global software
market will have a value of US$457 billion, an increase of
50.5% since 2008.

In 2002, a study commissioned by the US Department of
Commerce’s National Institute of Standards and Technology
concluded that software bugs, or errors, are so prevalent and
so detrimental that they cost the US economy an estimated
$59 billion annually, or about 0.6 percent of the gross
domestic product. The Department also concluded that at the
national level over half the costs of software bugs are borne
by software users and the remainder by the software devel-
opers/vendors. The study also found that, although all errors
cannot be removed, more than a third of these costs, or an
estimated $22.2 billion, could be eliminated by an improved
testing infrastructure that enables earlier and more effective
identification and removal of software defects.

A number of inventions have been established that
attempt to improve the quality of software. Many of these
prescribe techniques for identifying defects earlier in the
development cycle, automating the bug, or defect, identifi-
cation process or planning through predicting modeling.
However these approaches focus purely on the planning,

10

20

40

45

55

2

management and prevention of software defects. They fail,
however, to address the potentially more important issue of
how to adequately address defects once they have been
identified.

SUMMARY OF THE INVENTION

The present invention ties together the identification of a
defect during testing with the supporting application code on
the systems that led to the generation of the defect. The
association between the two is through the use of a unique
trace identification, or Trace ID. This Trace ID is unique to
each interaction between the consumer (e.g., client browser)
and the provider system(s) (web application servers, back
office systems, etc.). When a potential defect is identified by
the end user or tester, the present invention will “collect” the
associated log messages using the unique Trace ID and
attaches those to the defect. The software developer provid-
ing the defect triage can then readily review the associated
log files without having to manually search the supporting
log files manually.

One embodiment of the present invention is a method
comprising: a computer identifying a software defect; the
computer generating a software defect report, wherein the
software defect report is generated in real-time as the
software defect is identified during testing of the test case,
wherein the software defect report is submitted by a testing
entity to a software developer responsible for creating a
software product having the software defect, and wherein
the defect report contains information to identify the loca-
tion of the software defect in the application code of the
software product; the computer determining if the software
defect report information is complete; and if the software
defect report information is not complete, the computer
updating the defect report information, determining if the
software defect is reproducible, and recreating the software
defect in the case that the software defect is reproducible.

Another embodiment of the present invention is a com-
puter system comprising: a memory medium comprising
program instructions; a bus coupled to the memory medium;
and a processor, for executing the program instructions,
coupled to an input controller via the bus that when execut-
ing the program instructions causes the system to: identify a
software defect; generate a software defect report, wherein
the software defect report is generated in real-time as the
software defect is identified during testing of the test case,
wherein the software defect report is submitted by a testing
entity to a software developer responsible for creating a
software product having the software defect, and wherein
the defect report contains information to identify the loca-
tion of the software defect in the application code of the
software product; determine if the software defect report
information is complete; and if the software defect report
information is not complete, the computer updating the
defect report information, determining if the software defect
is reproducible, and recreating the software defect in the
case that the software defect is reproducible.

Yet another embodiment of the present invention is a
computer program product comprising a computer readable
storage medium, and program instructions stored on the
computer readable storage medium, to: identify a software
defect; generate a software defect report, wherein the soft-
ware defect report is generated in real-time as the software
defect is identified during testing of the test case, wherein
the software defect report is submitted by a testing entity to
a software developer responsible for creating a software
product having the software defect, and wherein the defect

US 9,465,725 B2

3

report contains information to identify the location of the
software defect in the application code of the software
product; determine if the software defect report information
is complete; and if the software defect report information is
not complete, the computer updating the defect report infor-
mation, determining if the software defect is reproducible,
and recreating the software defect in the case that the
software defect is reproducible.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description
of the various aspects of the invention taken in conjunction
with the accompanying drawings in which:

FIG. 1 shows a data processing system suitable for
implementing an embodiment of the present invention.

FIG. 2 shows a network which would work with an
embodiment of the present invention.

FIG. 3 illustrates an embodiment of a method of an “As-Is
Identification Process” wherein the defect is identified dur-
ing the testing phase.

FIG. 4 illustrates an embodiment of a method of an “As-Is
Fix Process”.

FIG. 5 illustrates an embodiment of a method of a “To-Be
Defect Fix Process” of the present invention.

FIG. 6 illustrates an embodiment of a system showing
interaction between the client and the server of the present
invention.

FIG. 7 illustrates an embodiment of a system showing a
log consolidator interceptor and various systems.

FIG. 8 illustrates a sample application screen that may
result in an error in a transactional application.

The drawings are merely schematic representations, not
intended to portray specific parameters of the invention. The
drawings are intended to depict only typical embodiments of
the invention, and therefore should not be considered as
limiting the scope of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The present invention, which meets the needs identified
above, is a method and system for decreasing the overall
time required to resolve a software defect by providing the
software developer with more complete and timelier infor-
mation obtained at the point the defect is identified. The
present invention enhances the typical data attached to the
defect so that the analysis and discovery period of the defect
is reduced and the overall time for defect resolution is
reduced. The enhanced data includes details about the trans-
action being executed and any exception stack traces gen-
erated during the execution of the transaction.

The present invention has several advantages over previ-
ously mentioned prior systems. While other systems attempt
to improve the defect identification process, this invention
attempts to decrease the overall response time to deliver a
fix. By automating activities that would normally be per-
formed manually, the time from initial defect identification
to defect resolution may be significantly reduced by several
factors.

Typically, once a defect is identified, logged, verified and
delivered to the software developer, the developer will then
use the base information submitted by the tester or end user
as a starting point for his’her analysis. The goal of the
analysis step is to identify where within the code the defect
originated. The analysis may follow one of several process
paths depending on what point in the product lifecycle the

15

20

25

30

35

40

45

60

4

defect was identified (e.g., development, testing, production,
etc.), what level of information was included (e.g., steps to
reproduce the defect), and whether the user has the ability to
recreate the defect (i.e., the defect may arise only in certain
circumstances that may not be easily reproducible). Regard-
less, in a best case scenario, this analysis step indeed a costly
part of the defect resolution process.

The present invention ties together the identification of a
defect during testing with the supporting application code on
the systems that led to the generation of the defect. The
association between the two is through the use of a unique
trace identification, or Trace ID. This Trace ID is unique to
each interaction between the consumer (e.g., client browser)
and the provider system(s) (web application server, back
office systems, etc). When a potential defect is identified by
the end user or tester, the present invention will “collect” the
associated log messages using the unique Trace ID and
attaches those to the defect. The software developer provid-
ing the defect triage can then readily review the associated
log files without having to manually search the supporting
log files manually.

One advantage of this invention is that it is concerned
with providing the relevant information at the point of
appearance of the defect. By gathering this information
real-time, the need to reproduce the defect in a development
or test environment after the fact is significantly reduced.
This eliminates a significant costly step that is part of the
typical development defect fix lifecycle today. As systems
become more complex and more widespread, the present
invention will play a significant role in improving the overall
quality of software.

A data processing system 100, such as system 102 shown
in FIG. 1, suitable for storing and/or executing program code
of the present invention will include a computer system 104
having at least one processor (processing unit 106) coupled
directly or indirectly to memory elements through a system
bus 112. Computer system 104 may be a client, e.g., a
browser, or a server. The memory elements can include local
memory (RAM 130) employed during actual execution of
the program code, bulk storage (storage 118), and cache
memories (cache 132) that provide temporary storage of at
least some program code in order to reduce the number of
times code must be retrieved from bulk storage 118 during
execution. Input/output or I/O devices (external devices 116)
(including but not limited to keyboards, displays (display
120), pointing devices, etc.) can be coupled to the system
either directly or through intervening 1/O controllers (I/O
interface(s) 114).

Network adapters (network adapter 138) may also be
coupled to the system 200 to enable the data processing
system (as shown in FIG. 2, data processing unit 202) to
become coupled through network connections (network
connection 208) to other data processing systems (data
processing unit 204), remote printers (printer 212) and/or
storage devices (storage 214) through intervening private
and/or public networks (network 210).

FIG. 3 illustrates an “As-Is Defect Identification Process”
300 for identifying defects during a testing phase of a
software product having a test lead 302, a tester 304 and a
software developer 306. FIG. 3 highlights a typical work-
flow executed during the testing phase of a software com-
ponent. In this scenario, the software developer 306 releases
software to tester 304 at 308, then tester 304 executes a test
case at 310 in order to satisfy a particular test strategy
objective. A test case is a pre-defined series of steps designed
to satisfy a particular testing objective (e.g., functional
verification of business requirement). A properly docu-

US 9,465,725 B2

5

mented test case may contain basic information about the
purpose of the test case, execution steps, preconditions and
expected results (see sample test case). If the actual results
or behavior observed during execution varies from the
expected results, it is determined whether a defect is found
at 311. If a defect is found at 311, a defect report is prepared
at 313 and the defect report will be logged in a defect
repository or other tracking mechanism at 314, the defect is
passed to the test lead 302 at 318, where it is determined
whether the defect was “valid” and, if not, the defect test is
updated at 320 or, if so, the defect is fixed at 322. After the
test case is updated at 320, the defect is fixed at 322. The
logging of the defect report is of immediate concern to the
present invention. Reporting mechanisms require limited
information about the identified defect. For example, in a
simple model the defect may simply contain a reference to
the test case and the actual results that differed from the
expected results.

FIG. 4 highlights a workflow, or method, 400 for an
“As-Is Defect Fix Process” executed after the defect has
been identified and logged. This process highlights a process
400 that a software developer 402 would execute when a
bug, or defect, is received in his/her queue. There are source
system developers 404 and a tester 406 in this process as
well. At 408, the software developer 402 fixes a software
defect, reviews a defect report at 410, determines whether
the defect report information is complete at 412. If the defect
information is complete, the defect report is updated at 416
and the process recycles at 410. If the defect information is
incomplete, at 414, software developer 402 determines
whether the defect is reproducible and, if not, tester 406
coordinates a defect retest at 418 and recreates the defect at
420. If software developer 402 determines that the defect is
reproducible, software developer 402 recreates the defect at
420, searches available log files at 422, and determines if
there is log data available at 428 and, if so, it is released at
436. If there is no log data available, log data files are
analyzed at 430. If there are other systems involved at 424,
source system developers 404 search available log files at
426 and determine whether there is log data available at 428
and the same process as described above as described above
is followed. At 432, software developer 402 determines the
defect source. At 434, the defect is fixed and, at 436, the
software is released. In this process, the majority of steps
(408-430 as shown in the figure) are focused on gathering
the necessary information to understand the source of the
defect (432 as shown in the figure). That is, identifying and
locating the point in the source code that is either coded
incorrectly or contains the flawed logic. Steps 408-430, as
shown in the figure, are a significant contributor to the
overall defect timeline. Gathering the necessary facts to
understand what the user was doing that generated the
defects can typically take up to 50% of the end-to-end
process. There are several points in this process that can
severely impede the software developer’s ability to diagnose
a defect root cause. For example, the identified defect may
not contain the complete set of information for the developer
to adequately understand the problem at hand (412). The
defect may not be reproducible. Many transactional systems,
for example, have complex data pre-conditional require-
ments. In addition, the systems themselves may not be
“available” for the software developer to leverage. Test
systems typically have restricted access in order to avoid
corruption of test data. The third major hindrance may be
when multiple systems are involved (424). In this scenario,
the defect may arise by any of the systems involved with
satisfying the specific user transaction. This multi-system

25

40

45

6

scenario significantly increases the complexity in purely
gathering the necessary log information to diagnose the
problem.

FIG. 5 highlights a proposed “To-Be Defect Process”
workflow 500 that would be realized as part of the present
invention having a software developer 502 and a tester 504.
In this scenario, the steps between the time the defect is
received by the software developer (506) to the time that the
defect root cause is understood (514) is dramatically sim-
plified. In addition, the overall timeframe would be reduced.
The present invention expedites this process because the
necessary information to perform the initial root cause
analysis is captured at the point of defect identification and
attached to the defect report submitted by the tester. This is
different than the current process that requires a significant
amount of manual user intervention.

FIG. 5 illustrates a process that begins at 506 where a
defect is detected by software developer 502 and moves to
508 where software developer 502 reviews the defect report.
At 510, software developer 502 determines whether the
information in the defect report is complete and, if not, tester
504 updates the information in the defect report. But, if
software developer 502 determines that the information in
the defect report is complete, software developer 502 ana-
lyzes log entries, or files, at 512, determines the defect
source at 514, fixes the defect at 516 and releases the
software at 518.

FIG. 6 highlights the use of a standard Interceptor pattern
600 to enable the present invention in a typical software
application. It shows a service/dispatcher 602 and an action
proxy 604. In this, two Interceptors are leveraged: the Trace
ID Interceptor 606 and a Log Consolidator Interceptor 608.
Trace ID Interceptor 606 is responsible for intercepting
outgoing results from service/dispatcher 602 and assigning
a unique identifier. This unique identifier, or Trace ID, will
then function as the primary key for the next request from
the client to the backend systems. When a failure occurs, the
Trace ID will be used to retrieve the pertinent information
from the providing systems.

Log Consolidator Interceptor 608 is responsible for inter-
cepting outgoing results and inspecting for the presence of
errors. Should an error exist, Log Consolidator Interceptor
608 will create a result 612 and make a series of calls
(Action 610) to the relevant source system to obtain the log
details. This may be obtained asynchronously so as not to
have a performance impact on the return call to the con-
suming application.

As shown in FIG. 7, a system 700 has a Log Consolidator
Interceptor 702 connected to systems 1 (704), 2 (706) and 3
(708). Each of the systems 1 (704), 2 (706) and 3 (708) have
their own respective GetlLogs 710 that are connected to log
data 712. When the presence of errors is detected, the Log
Consolidator Interceptor 702 will make calls to the source
systems requesting the associated log information be
obtained. The source systems will then search the available
logs to obtain the trace information.

FIG. 8 illustrates a sample web application screen 800 that
may result in a error in a transactional application. In this
figure, the user specifies a series of information (update user
profile 802), such as user name (804, 806), address (808,
810, 812, 814) and then clicks an ‘OK’ button (816) or
otherwise presses a ‘Cancel’ button (818). If the ‘OK’ button
is pressed, the data will then be posted to the server-side
component for processing.

It should be understood that the present invention is
typically computer-implemented via hardware and/or soft-
ware. As such, client systems and/or servers will include

US 9,465,725 B2

7

computerized components as known in the art. Such com-
ponents typically include (among others) a processing unit,
a memory, a bus, input/output (/O) interfaces, external
devices, etc.

While shown and described herein as a system and
method for improving the defect reporting mechanism in the
software quality automated process using automated log
scanning, it is understood that the invention further provides
various alternative embodiments. For example, in one
embodiment, the invention provides a computer-readable/
useable medium that includes computer program code to
enable a system for improving the defect reporting mecha-
nism in the software quality automated process using auto-
mated log scanning. To this extent, the computer-readable/
useable medium includes program code that implements
each of the various process steps of the invention. It is
understood that the terms computer-readable medium or
computer useable medium comprises one or more of any
type of physical embodiment of the program code. In
particular, the computer-readable/useable medium can com-
prise program code embodied on one or more portable
storage articles of manufacture (e.g., a compact disc, a
magnetic disk, a tape, etc.), on one or more data storage
portions of a computing device, such as memory and/or
storage system (e.g., a fixed disk, a read-only memory, a
random access memory, a cache memory, etc.), and/or as a
data signal (e.g., a propagated signal) traveling over a
network (e.g., during a wired/wireless electronic distribution
of the program code).

In another embodiment, the invention provides a com-
puter-implemented method for improving the defect report-
ing mechanism in the software quality automated process
using automated log scanning. In this case, a computerized
infrastructure can be provided and one or more systems for
performing the process steps of the invention can be
obtained (e.g., created, purchased, used, modified, etc.) and
deployed to the computerized infrastructure. To this extent,
the deployment of a system can comprise one or more of (1)
installing program code on a computing device, such as
computer system from a computer-readable medium; (2)
adding one or more computing devices to the computer
infrastructure; and (3) incorporating and/or modifying one
or more existing systems of the computer infrastructure to
enable the computerized infrastructure to perform the pro-
cess steps of the invention.

As used herein, it is understood that the terms “program
code” and “computer program code” are synonymous and
may mean any expression, in any language, code or notation,
of a set of instructions intended to cause a computing device
having an information processing capability to perform a
particular function either directly before or after either or
both of the following: (a) conversion to another language,
code or notation; and/or (b) reproduction in a different
material form. To this extent, program code can be embodied
as one or more of: an application/software program, com-
ponent software/a library of functions, an operating system,
a basic /O system/driver for a particular computing and/or
1/O device, and the like.

In another embodiment, the invention provides a business
method that performs the process steps of the invention on
a subscription, advertising, and/or fee basis. That is, a
service provider, such as a Solution Integrator, could offer to
deploy a computer infrastructure for improving the defect
reporting mechanism in the software quality automated
process using automated log scanning. In this case, the
service provider can create, maintain, and support, etc., the
computer infrastructure by integrating computer-readable

10

15

20

25

30

35

40

45

50

55

60

65

8

code into a computing system, wherein the code in combi-
nation with the computing system is capable of performing
the process steps of the invention for one or more customers.
In return, the service provider can receive payment from the
customer(s) under a subscription and/or fee agreement and/
or the service provider can receive payment from the sale of
advertising content to one or more third parties.

The foregoing description of various aspects of the inven-
tion has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifica-
tions and variations that may be apparent to a person skilled
in the art are intended to be included within the scope of the
invention as defined by the accompanying claims.

What is claimed is:

1. A method comprising:

assigning to each interaction with a software product
being tested a unique trace ID;

a computer, in response to identifying a software defect,
automatically associating the unique trace ID corre-
sponding to the interaction during which the software
defect occurred with log messages corresponding to the
interaction;

the computer generating a software defect report, wherein
the software defect report is generated in real-time as
the software defect is identified during testing of a test
case, wherein the software defect report is submitted by
a testing entity to a software developer responsible for
creating the software product having the software
defect, and wherein the defect report contains the log
messages collected using the unique trace 1D that
associates the software defect during execution of a
testing case with application code on a source system
that led to a generation of the defect to identify a
location of the software defect in the application code
of the software product;

the computer determining if the software defect report
information is complete; and if the software defect
report information is not complete, the computer updat-
ing the defect report information, determining if the
software defect is reproducible, and recreating the
software defect in the case that the software defect is
reproducible.

2. The method as defined in claim 1 further comprising the
computer analyzing log files in the case that the software
defect report information is complete.

3. The method as defined in claim 2 further comprising,
if the defect report information is complete, searching the
log files, determining if the log files are available, and
releasing the software.

4. The method as defined in claim 2 further comprising:

the computer determining a defect source;

the computer fixing the software defect; and

the computer releasing the software.

5. A computer system comprising:

a memory medium comprising program instructions;

a bus coupled to the memory medium; and

a processor, for executing the program instructions,
coupled to an input controller via the bus that when
executing the program instructions causes the system
to:

assign to each interaction with a software product being
tested a unique trace ID; automatically associate, in
response to identifying a software defect the unique
trace 1D corresponding to the interaction during which

US 9,465,725 B2

9

the software defect occurred with log messages corre-
sponding to the interaction;

generate a software defect report, wherein the software

defect report is generated in real-time as the software
defect is identified during testing of a test case, wherein
the software defect report is submitted by a testing
entity to a software developer responsible for creating
a software product having the software defect, and
wherein the defect report contains the log messages
collected using the unique trace ID that associates the
software defect during execution of a testing case with
application code on a source system that led to a
generation of the defect to identify a location of the
software defect in the application code of the software
product;

determine if the software defect report information is

complete; and

if the software defect report information is not complete,

the computer updating the defect report information,
determining if the software defect is reproducible, and
recreating the software defect in the case that the
software defect is reproducible.

6. The computer system as defined in claim 5, the program
instructions further causing the system to analyze log files in
the case that the software defect report information is
complete.

7. The computer system as defined in claim 6, wherein if
the defect report information is complete, the program
instructions further causing the system to search the log files,
determine if the log files are available, and release the
software.

8. The computer system as defined in claim 6, the program
instructions further causing the system to:

determine a defect source;

fix the software defect; and

release the software.

9. A computer program product comprising a non-transi-
tory computer readable storage medium, and program
instructions stored on the computer readable storage
medium, to:

15

20

25

35

10

assign to each interaction with a software product being
tested a unique trace ID; automatically associate, in
response to identifying a software defect the unique
trace 1D corresponding to the interaction during which
the software defect occurred with log messages corre-
sponding to the interaction;

generate a software defect report, wherein the software

defect report is generated in real-time as the software
defect is identified during testing of a test case, wherein
the software defect report is submitted by a testing
entity to a software developer responsible for creating
the software product having the software defect, and
wherein the defect report contains the log messages
collected using a unique trace ID that associates the
software defect during execution of a testing case with
application code on a source system that led to a
generation of the defect to identify a location of the
software defect in the application code of the software
product;

determine if the software defect report information is

complete; and

if the software defect report information is not complete,

the computer updating the defect report information,
determining if the software defect is reproducible, and
recreating the software defect in the case that the
software defect is reproducible.

10. The computer program product as defined in claim 9,
the program instructions further causing the system to
analyze log files in the case that the software defect report
information is complete.

11. The computer program product as defined in claim 9,
wherein if the defect report information is complete, the
program instructions further causing the system to search the
log files, determine if the log files are available, and release
the software.

12. The computer program product as defined in claim 9,
the program instructions further causing the system to:

determine a defect source;

fix the software defect; and

release the software.

#* #* #* #* #*

